4.8 Article

Thermodynamically Stable Orthorhombic γ-CsPbI3 Thin Films for High-Performance Photovoltaics

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 37, 页码 11716-11725

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b06050

关键词

-

资金

  1. National Natural Science Foundation of China [21573249]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDBI2020100]
  3. Youth Innovation Promotion Association CAS [2017050]

向作者/读者索取更多资源

All-inorganic lead halide perovskites demonstrate improved thermal stability over the organic inorganic halide perovskites, but the cubic alpha-CsPbI3 with the most appropriate bandgap for light harvesting is not structurally stable at room temperature and spontaneously transforms into the undesired orthorhombic delta-CsPbI3. Here, we present a new member of black-phase thin films of all-inorganic perovskites for high-efficiency photovoltaics, the orthorhombic gamma-CsPbI3 thin films with intrinsic thermodynamic stability and ideal electronic structure. Exempt from introducing organic ligands or incorporating mixed cations/anions into the crystal lattice, we stabilize the gamma-CsPbI3 thin films by a simple solution process in which a small amount of H2O manipulates the size-dependent phase f ormation through a proton transfer reaction. Theoretical calculations coupled with experiments show that gamma-CsPbI3 with a lower surface free energy becomes thermodynamically preferred over delta-CsPbI3 at surface areas greater than 8600 m(2)/mol and exhibits comparable optoelectronic properties to alpha-CsPbI3. Consequently, gamma-CsPbI3-based solar cells display a highly reproducible efficiency of 11.3%, among the highest records for CsPbI3 thin-film solar cells, with robust stability in ambient atmosphere for months and continuous operating conditions for hours. Our study provides a novel and fundamental perspective to overcome the Achilles' heel of the inorganic lead iodide perovskite and opens it up for high-performance optoelectronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据