4.8 Article

Stabilization of Hexaaminobenzene in a 2D Conductive Metal-Organic Framework for High Power Sodium Storage

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 32, 页码 10315-10323

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b06020

关键词

-

资金

  1. Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy through the Advanced Battery Materials Research (BMR) Program
  2. Dreyfus Foundation Post-doctoral Fellowship for Environmental Chemistry
  3. National Research Foundation of Korea [NRF-2017R1A6A3A03007053]
  4. U.S. Department of Energy, Office of Sciences, Office of Basic Energy Sciences
  5. National Science Foundation Graduate Research Fellowship [DGE-1147474]
  6. Knut & Alice Wallenberg Foundation through the project grant 3DEM-NATUR
  7. Swedish Research Council (VR) through the MATsynCELL project of the Rontgen-Angstrom Cluster

向作者/读者索取更多资源

Redox-active organic materials have gained growing attention as electrodes of rechargeable batteries. However, their key limitations are the low electronic conductivity and limited chemical and structural stability under redox conditions. Herein, we report a new cobalt-based ;2D conductive metal-organic framework (MOF), Co-HAB, having stable, accessible, dense active sites for high-power energy storage device through conjugative coordination between a redox-active linker, hexaaminobenzene (HAB), and a Co(II) center. Given the exceptional capability of Co-HAB for stabilizing reactive HAB, a reversible three-electron redox reaction per HAB was successfully demonstrated for the first time, thereby presenting a promising new electrode material for sodium-ion storage. Specifically, through synthetic tunability of Co-HAB, the bulk electrical conductivity of 1.57 S cm(-1) was achieved, enabling an extremely high rate capability, delivering 214 mAh g(-1) within 7 min or 152 mAh g(-1) in 45 s. Meanwhile, an almost linear increase of the areal capacity upon increasing active mass loading up to 9.6 mg cm(-2) was obtained, demonstrating 2.6 mAh cm(-2) with a trace amount of conducting agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据