4.8 Article

Concave-Convex pi-pi Template Approach Enables the Synthesis of [10]Cycloparaphenylene-Fullerene [2]Rotaxanes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 140, 期 41, 页码 13413-13420

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.8b08244

关键词

-

资金

  1. DFG [SFB953]
  2. University of Ulm
  3. FAU Erlangen-Nurnberg

向作者/读者索取更多资源

The cycloparaphenylenes (CPPs) are a class of strained macrocycles that until 2008 were considered beyond the reach of organic synthesis. With its cyclic array of ten para-substituted phenylene rings, [10]CPP possesses a concave pi-system that is perfectly preorganized for the strong supramolecular association of convex fullerenes such as C-60. Although mechanically interlocked CPP architectures have been observed in the gas phase, the rational synthesis of bulk quantities has not been achieved yet, which is likely due to the fact that conventional template strategies are not amenable to CPP rings that lack heteroatoms. Here, we report the synthesis of two [2]rotaxanes in which a [10]CPP ring binds to a central fullerene bis-adduct and is prevented from dethreading by the presence of two bulky fullerene hexakis-adduct stoppers. The final step in the rotaxane synthesis is surprisingly efficient (up to ca. 40% yield) and regioselective because the fullerene acts as an efficient convex template, while [10]CPP acts as a supramolecular directing group, steering the reaction at the central fullerene exclusively toward two trans regioisomers. Comprehensive physicochemical studies confirmed the interlocked structure, shed light on the dynamic nature of the CPP-fullerene interaction, and revealed intriguing consequences of the mechanical bond on charge transfer processes. In light of recent advances in the synthesis of nanohoops and nanobelts, our concave-convex pi-pi templating strategy may be broadly useful and enable applications in molecular electronics or complex molecular machinery.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据