4.8 Article

Bifunctional Porphyrin Catalysts for the Synthesis of Cyclic Carbonates from Epoxides and CO2: Structural Optimization and Mechanistic Study

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 43, 页码 15270-15279

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja507665a

关键词

-

资金

  1. ENEOS Hydrogen Trust Fund
  2. Japan Science and Technology Agency (JST)
  3. Okayama Foundation for Science and Technology

向作者/读者索取更多资源

We prepared bifunctional Mg-II porphyrin catalysts 1 for the solvent-free synthesis of cyclic carbonates from epoxides and CO2. The activities of 1d, 1h, and 1i, which have Br, Cl, and I counteranions, respectively, increased in the order 1i < 1h < 1d. Catalysts 1d and 1jm, which bear four tetraalkylammonium bromide groups with different alkyl chain lengths, showed comparable but slightly different activities. Based on the excellent catalyst 1d, we synthesized MgII porphyrin 1o with eight tetraalkylammonium bromide groups, which showed even higher catalytic activity (turnover number, 138,000; turnover frequency, 19,000 h(-1)). The catalytic mechanism was studied by using 1d. The yields were nearly constant at initial CO2 pressures in the 16 MPa range, suggesting that CO2 was not involved in the rate-determining step in this pressure range. No reaction proceeded in supercritical CO2, probably because the epoxide (into which the catalyst dissolved) dissolved in and was diluted by the supercritical CO2. Experiments with O-18-labeled CO2 and D-labeled epoxide suggested that the catalytic cycle involved initial nucleophilic attack of Br on the less hindered side of the epoxide to generate an oxyanion, which underwent CO2 insertion to afford a CO2 adduct; subsequent intramolecular ring closure formed the cyclic carbonate and regenerated the catalyst. Density functional theory calculations gave results consistent with the experimental results, revealing that the quaternary ammonium cation underwent conformational changes that stabilized various anionic species generated during the catalytic cycle. The high activity of 1d and 1o was due to the cooperative action of the Mg-II and Br and a conformational change (induced-fit) of the quaternary ammonium cation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据