4.8 Article

The Photochemical Route to Octahedral Iron(V). Primary Processes and Quantum Yields from Ultrafast Mid-Infrared Spectroscopy

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 28, 页码 10095-10103

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja5045133

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft through the Collaborative Research Center 813 Chemistry at Spin Centers

向作者/读者索取更多资源

Recently, the complex cation [(cyclam-ac)Fe-III(N-3)](+) has been used in solid matrices under cryogenic conditions as a photochemical precursor for an octahedral iron nitride containing the metal at the remarkably high oxidation state +5. Here, we study the photochemical primary events of this complex cation in liquid solution at room temperature using femtosecond time-resolved mid-infrared (fs-MIR) spectroscopy as well as step-scan Fourier-transform infrared spectroscopy, both of which were carried out with variable-wavelength excitation. In stark contrast to the cryomatrix experiments, a photomddized product cannot be detected in liquid solution when the complex is excited through its putative LMCT band in the visible region. Instead, only a redox-neutral dissociation of azide anions is seen under these conditions. However, clear evidence is found for the formation of the highly oxidized iron nitride product when the photolysis is carried out in liquid solution with UV light. Yet, the photooxidation must compete with photoreductive Fe-N bond cleavage leading to aside radicals and an iron(II) complex. Both, redox-neutral and photoreductive Fe-N bond breakage as well as photooxidative N-N bond breakage occur on a time scale well below a few hundred femtoseconds. The majority of fragments suffer from geminate recombination back to the parent complex on a time scale of 10 Ps. Upper limits of the primary quantum yield for photooxidation are derived from the fs-MIR data, which increase with increasing energy of the photolysis photon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据