4.8 Article

Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 41, 页码 14486-14497

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja506553r

关键词

-

资金

  1. BIG-NSE (Berlin international Graduate School of Natural Sciences and Engineering)
  2. Deutsche Forschungsgemeinschaft (DFG) [STR 596/4-1]

向作者/读者索取更多资源

The synthesis and characterization of functionalized carbon using variable doping profiles are presented. The hybrids were obtained from nitrile-functionalized ionic precursors and a ferric chloride mediator. This way, novel nitrogen doped and nitrogen-sulfur, nitrogen-phosphorus, and nitrogen-boron codoped carbon hybrids with a morphology containing microporous nanometer-sized particles were obtained. As-prepared heteroatom doped carbons exhibited superior electrocatalytic activity toward the oxygen reduction reaction (ORR) in alkaline and acid electrolytes. In particular, both the heteroatom type and iron were found to play crucial roles in improving the catalytic activity of functionalized carbon. It is worth noting that sulfur-nitrogen codoped functionalized materials synthesized in the presence of ferric chloride showed higher activity and stability in comparison to those of the commercial state-of-the-art Pt catalyst in alkaline electrolyte. Moreover, in acid electrolyte, sulfur-nitrogen codoped catalyst rivaled the activity of Pt with a stability outperforming that of Pt. Our X-ray photoelectron spectroscopy (XPS) investigation revealed a distinctive atomic structure in nitrogen-sulfur codoped material in comparison to other codoped catalysts, most likely explaining its superior electrocatalytic activity. This work presents a novel toolbox for designing advanced carbon hybrids with variable heteroatom doping profiles which presents tunable and enhanced ORR performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据