4.8 Article

Surface Plasmon Resonance Enhanced Light Absorption and Photothermal Therapy in the Second Near-Infrared Window

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 44, 页码 15684-15693

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja508641z

关键词

-

资金

  1. Chinese Academy of Sciences
  2. Natural Science Foundation of China [21473243, 51202283]
  3. Singapore MOE Tier 2 [ACR 12/12]

向作者/读者索取更多资源

Enhanced near-field at noble metal nanoparticle surfaces due to localized surface plasmon resonance (LSPR) has been researched in fields ranging from biomedical to photoelectrical applications. However, it is rarely explored on nonmetallic nanomaterials discovered in recent years, which can also support LSPR by doping-induced free charge carriers, let alone the investigation of an intricate system involving both. Here we construct a dual plasmonic hybrid nanosystem AuCu9S5 with well controlled interfaces to study the coupling effect of LSPR originating from the collective electron and hole oscillations. Cu9S5 LSPR is enhanced by 50% in the presence of Au, and the simulation results confirm the coupling effect and the enhanced local field as well as the optical power absorption on Cu9S5 surface. This enhanced optical absorption cross section, high photothermal transduction efficiency (37%), large light penetration depth at 1064 nm, excellent X-ray attenuation ability, and low cytotoxicity enable AuCu9S5 hybrids for robust photothermal therapy in the second near-infrared (NIR) window with low nanomaterial dose and laser flux, making them potential theranostic nanomaterials with X-ray CT imaging capability. This study will benefit future design and optimization of photoabsorbers and photothermal nanoheaters utilizing surface plasmon resonance enhancement phenomena for a broad range of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据