4.8 Article

Covalent Attachment of Mechanoresponsive Luminescent Micelles to Glasses and Polymers in Aqueous Conditions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 11, 页码 4273-4280

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja412670g

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan [22000006, 24689003, 24659042]
  2. Japan Society for the Promotion of Science Research Fellowship for Young Scientists
  3. Grants-in-Aid for Scientific Research [22000006, 24655147] Funding Source: KAKEN

向作者/读者索取更多资源

Covalent attachment of mechanoresponsive luminescent organic or organometallic compounds to other materials is a promising approach to develop a wide variety of mechanoresponsive luminescent materials. Here, we report covalently linkable mechanoresponsive micelles that change their photoluminescence from yellow to green in response to mechanical stimulation under aqueous conditions. These micelles are composed of a dumbbell-shaped amphiphilic pyrene derivative having amine groups at the peripheral positions of its dendrons. Using a well-established cross-linker, the micelles were covalently linked via their peripheral amine groups to the surface of glass beads, polylactic acid (PLA) beads, and living cells under aqueous conditions. Vortexing of glass beads bearing the micelles in a glass vial filled with water caused a photoluminescence color change from yellow to green. PLA beads bearing the micelles showed no change in photoluminescence color under the same conditions. We ascribe this result to the lower density and stiffness of the PLA beads, because the color of the PLA beads changed on vortexing in the presence of bare glass beads. HeLa cells and HL-60 cells bearing the micelles showed no obvious photoluminescence color change under vortexing. The structure, photophysical properties, and mechanism of photoluminescence color change of the micellar assemblies were examined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据