4.8 Article

Redox Chemistry of Selenenic Acids and the Insight It Brings on Transition State Geometry in the Reactions of Peroxyl Radicals

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 4, 页码 1570-1578

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja411493t

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Foundation for Innovation
  3. Italian MIUR, Rome [2010PFLRJR]
  4. Canada Research Chairs program

向作者/读者索取更多资源

The redox chemistry of selenenic acids has been explored for the first time using a persistent selenenic acid, 9-triptyceneselenenic acid (RSeOH), and the results have been compared with those we recently obtained with its lighter chalcogen analogue, 9-triptycenesulfenic acid (RSOH). Specifically, the selenenyl radical was characterized by EPR spectroscopy and equilibrated with a phenoxyl radical of known stability in order to determine the O-H bond dissociation enthalpy of RSeOH (80.9 +/- 0.8 kcal/mol): ca. 9 kcal/mol stronger than in RSOH. Kinetic measurements of the reactions of RSeOH with peroxyl radicals demonstrate that it readily undergoes H-atom transfer reactions (e.g., k = 1.7 x 10(5) M-1 s(-1) in PhCl), which are subject to kinetic solvent effects and kinetic isotope effects similar to RSOH and other good H-atom donors. Interestingly, the rate constants for these reactions are only 18- and 5-fold smaller than those measured for RSOH in PhCI and CH3CN, respectively, despite being 9 kcal/mol less exothermic for RSeOH. IR spectroscopic studies demonstrate that RSeOH is less H-bond acidic than RSOH, accounting for these solvent effects and enabling estimates of the pK(a)s in RSeOH and RSOH of ca. 15 and 10, respectively. Calculations suggest that the TS structures for these reactions have significant charge transfer between the chalcogen atom and the internal oxygen atom of the peroxyl radical, which is nominally better for the more polarizable selenenic acid. The higher than expected reactivity of RSeOH toward peroxyl radicals is the strongest experimental evidence to date for charge transfer/secondary orbital interactions in the reactions of peroxyl radicals with good H-atom donors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据