4.8 Article

Mechanism of Photoinduced Bending and Twisting in Crystalline Microneedles and Microribbons Composed of 9-Methylanthracene

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 18, 页码 6617-6625

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja412216z

关键词

-

资金

  1. National Science Foundation [DMR-1207063]
  2. Direct For Mathematical & Physical Scien
  3. Division Of Materials Research [1207063] Funding Source: National Science Foundation

向作者/读者索取更多资源

The solid-state photodimerization of 9-methylanthracene is used as a model system to investigate how crystal morphology and reaction dynamics affect photomechanical deformations of single microcrystals. By varying the crystallization conditions, two different crystal shapes, microneedles and microribbons, are grown on a clean water surface. The microribbons twist under irradiation, while the microneedles bend. In both shapes, the maximum deformation occurs at roughly the midpoint of the reaction, while further dimerization causes the crystals return to their original shapes. Powder X-ray diffraction patterns establish that the needles and ribbons have the same crystal orientation and that the photoreaction proceeds in a crystal-to-crystal manner. NMR spin lattice relaxation measurements are consistent with the rapid formation of large (>100 nm) dimer crystal domains. Simultaneous measurement of the needle bending and monomer fluorescence signal allows us to correlate the bending with the reaction progress. The behavior is qualitatively reproduced by a model in which the motion is driven by strain between spatially distinct reactant and product domains, also called heterometry. We consider several different mechanisms that could give rise to these spatially distinct domains. The ability to control the photoinduced crystal deformation by manipulating crystal shape and solid-state reaction kinetics suggests that photoreactive molecular crystals may be useful for generating well-defined motions on small length scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据