4.8 Article

Water-Polysaccharide Interactions in the Primary Cell Wall of Arabidopsis thaliana from Polarization Transfer Solid-State NMR

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 29, 页码 10399-10409

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja504108h

关键词

-

资金

  1. DOE-BES [DE-AC02-07CH11358, DE-FG02-84ER13179]
  2. US-DOE-BES-EFRC [DE-SC0001090]
  3. Div Of Molecular and Cellular Bioscience
  4. Direct For Biological Sciences [0741914] Funding Source: National Science Foundation

向作者/读者索取更多资源

Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water H-1 polarization to polysaccharides H-1-H-1 through distance- and mobility-dependent H-1-H-1 dipolar couplings and detecting it through polysaccharide C-13 signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water-pectin polarization transfer is much faster than water cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water-polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water pectin spin diffusion precedes water cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据