4.8 Article

Mechanically Encoded Cellular Shapes for Synthesis of Anisotropic Mesoporous Particles

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 38, 页码 13138-13141

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja506718z

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division
  2. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

The asymmetry that pervades molecular mechanisms of living systems increasingly informs the aims of synthetic chemistry, particularly in the development of catalysts, particles, nanomaterials, and their assemblies. For particle synthesis, overcoming viscous forces to produce complex, nonspherical shapes is particularly challenging; a problem that is continuously solved in nature when observing dynamic biological entities such as cells. Here we bridge these dynamics to synthetic chemistry and show that the intrinsic asymmetric shapes of erythrocytes can be directed, captured, and translated into composites and inorganic particles using a process of nanoscale silica-bioreplication. We show that crucial aspects in particle design such as particle particle interactions, pore size, and macromolecular accessibility can be tuned using cellular responses. The durability of resultant particles provides opportunities for shape-preserving transformations into metallic, semiconductive, and ferromagnetic particles and assemblies. The ability to use cellular responses as structure directing agents offers an unprecedented toolset to design colloidal-scale materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据