4.8 Article

Design and Synthesis of a FlAsH-Type Mg2+ Fluorescent Probe for Specific Protein Labeling

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 6, 页码 2374-2381

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja410031n

关键词

-

资金

  1. Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT) [S0801008]
  2. KAKENHI [24240045, 25750395]
  3. Grants-in-Aid for Scientific Research [25750395] Funding Source: KAKEN

向作者/读者索取更多资源

Although the magnesium ion (Mg2+) is one of the most abundant divalent cations in cells and is known to play critical roles in many physiological processes, its mobilization and underlying mechanisms are still unknown. Here, we describe a novel fluorescent Mg2+ probe, KMG-104-AsH, composed of a highly selective fluorescent Mg2+ probe, KMG-104, and a fluorescence-recoverable probe, FlAsH, bound specifically to a tetracysteine peptide tag (TCtag), which can be genetically incorporated into any protein. This probe was developed for molecular imaging of local changes in intracellular Mg2+ concentration. KMG-104-AsH was synthesized, and its optical properties were investigated in solution. The fluorescence intensity of KMG-104-AsH (at lambda(em/max) = 540 nm) increases by more than 10-fold by binding to both the TCtag peptide and Mg2+, and the probe is highly selective for Mg2+ (K-d/Mg = 1.7 mM, K-d/Ca >> 100 mM). Application of the probe for imaging of Mg2+ in HeLa cells showed that this FlASH-type Mg2+ sensing probe is membrane-permeable and binds specifically to tagged proteins, such as TCtag-actin and mKeima-TCtag targeted to the cytoplasm and the mitochondrial intermembrane space. KMG-104-AsH bound to TCtag responded to an increase in intracellular Mg2+ concentration caused by the release of Mg2+ from mitochondria induced by FCCP, a protonophore that eliminates the inner membrane potential of mitochondria. This probe is expected to be a strong tool for elucidating the dynamics and mechanisms of intracellular localization of Mg2+.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据