4.8 Article

Mechanism of Alcohol Oxidation Mediated by Copper(II) and Nitroxyl Radicals

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 136, 期 34, 页码 12166-12173

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja5070137

关键词

-

资金

  1. DOE [DE-FG02-05ER15690]

向作者/读者索取更多资源

2,2'-Bipyridine-ligated copper complexes, in combination with TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl), are highly effective catalysts for aerobic alcohol oxidation. Considerable uncertainty and debate exist over the mechanism of alcohol oxidation mediated by Cu-II and TEMPO. Here, we report experimental and density functional theory (DFT) computational studies that distinguish among numerous previously proposed mechanistic pathways. Oxidation of various classes of radical-probe substrates shows that long-lived radicals are not formed in the reaction. DFT computational studies support this conclusion. A bimolecular pathway involving hydrogen-atom-transfer from a Cu-II-alkoxide to a nitroxyl radical is higher in energy than hydrogen transfer from a Cu-II-alkoxide to a coordinated nitroxyl species. The data presented here reconcile a collection of diverse and seemingly contradictory experimental and computational data reported previously in the literature. The resulting Oppenauer-like reaction pathway further explains experimental trends in the relative reactivity of different classes of alcohols (benzylic versus aliphatic and primary versus secondary), as well as the different reactivity observed between TEMPO and bicyclic nitroxyls, such as ABNO (ABNO = 9-azabicyclo[3.3.1]nonane N-oxyl).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据