4.8 Article

Engineering the Optical Response of the Titanium-MIL-125 Metal-Organic Framework through Ligand Functionalization

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 30, 页码 10942-10945

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja405350u

关键词

-

资金

  1. Royal Society University Research Fellowship
  2. ERC Starting Grant
  3. EPSRC [EP/F067496]
  4. Engineering and Physical Sciences Research Council [EP/F067496/1] Funding Source: researchfish
  5. EPSRC [EP/F067496/1] Funding Source: UKRI

向作者/读者索取更多资源

Herein we discuss band gap modification of MIL-125, a TiO2/1,4-benzenedicarboxylate (bdc) metal-organic framework (MOF). Through a combination of synthesis and computation, we elucidated the electronic structure of MIL-125 with aminated linkers. The band gap decrease observed when the monoaminated bdc-NH2 linker was used arises from donation of the N 2p electrons to the aromatic linking unit, resulting in a red-shifted band above the valence-band edge of MIL-125. We further explored in silico MIL-125 with the diaminated linker bdc(NH2)(2) and other functional groups (-OH, -CH3, -Cl) as alternative substitutions to control the optical response. The bdc-(NH2)2 linking unit was predicted to lower the band gap of MIL-125 to 1.28 eV, and this was confirmed through the targeted synthesis of the bdc-(NH2)(2)-based MIL,-125. This study illustrates the possibility of tuning the optical response of MOFs through rational functionalization of the linking unit, and the strength of combined synthetic/computational approaches for targeting functionalized hybrid materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据