4.8 Article

High Thermoelectric Performance via Hierarchical Compositionally Alloyed Nanostructures

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 19, 页码 7364-7370

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja403134b

关键词

-

资金

  1. DOE-EERE/NSF [CBET-1048728]
  2. Revolutionary Materials for Solid State Energy Conversion, an Energy Frontier Research Center
  3. U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001054]
  4. NSF-NSEC
  5. NSF-MRSEC
  6. Keck Foundation
  7. State of Illinois
  8. Northwestern University
  9. Office of Naval Research DURIP
  10. Div Of Chem, Bioeng, Env, & Transp Sys
  11. Directorate For Engineering [1048728] Funding Source: National Science Foundation

向作者/读者索取更多资源

Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT similar to 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide. Our strategy goes beyond the recent ideas of reducing thermal conductivity by adding two key new theory-guided concepts in engineering, both electronic structure and band alignment across nanostructure-matrix interface. Utilizing density functional theory for calculations of valence band energy levels of nanoscale precipitates of CdS, CdSe, ZnS, and ZnSe, we infer favorable valence band alignments between PbSe and compositionally alloyed nanostructures of CdS1-xSex/ZnS1-xSex. Then by alloying Cd on the cation sublattice of PbSe, we tailor the electronic structure of its two valence bands (light hole L and heavy hole Sigma) to move closer in energy, thereby enabling the enhancement of the Seebeck coefficients and the power factor.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据