4.8 Article

Enhanced Hydrogen Evolution Catalysis from Chemically Exfoliated Metallic MoS2 Nanosheets

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 28, 页码 10274-10277

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja404523s

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-FG02-09ER46664]
  2. Research Corporation Scialog Award
  3. UW-Madison Vilas Associate Award

向作者/读者索取更多资源

Promising catalytic activity from molybdenum disulfide (MoS2) in the hydrogen evolution reaction (HER) is attributed to active sites located along the edges of its two-dimensional layered crystal structure, but its performance is currently limited by the density and reactivity of active sites, poor electrical transport, and inefficient electrical contact to the catalyst. Here we report dramatically enhanced HER catalysis (an electrocatalytic current density of 10 mA/cm(2) at a low overpotential of 187 mV vs RHE and a Tafel slope of 43 mV/decade) from metallic nanosheets of 1T-MoS2 chemically exfoliated via lithium intercalation from semiconducting 2H-MoS2 nanostructures grown directly on graphite. Structural characterization and electrochemical studies confirmed that the nanosheets of the metallic MoS2 polymorph exhibit facile electrode kinetics and low-loss electrical transport and possess a proliferated density of catalytic active sites. These distinct and previously unexploited features of 1T-MoS2 make these metallic nanosheets a highly competitive earth-abundant HER catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据