4.8 Article

Defects Are Needed for Fast Photo-Induced Electron Transfer from a Nanocrystal to a Molecule: Time-Domain Ab Initio Analysis

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 50, 页码 18892-18900

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja408936j

关键词

-

资金

  1. SIRG Program of the Science Foundation Ireland [11/SIRG/E2172]
  2. UCD [SF895]
  3. IRCSET-Marie Curie International Mobility Fellowship in Science, Engineering, and Technology [PD/2010/INSP/1485]
  4. U.S. Department of Energy [DE-SC0006527]

向作者/读者索取更多资源

Quantum dot (QD) solar cells constitute an attractive alternative to traditional solar cells due to unique electronic and optical properties of QDs. In order to achieve high photon-to-electron conversion efficiency, rapid charge separation and slow charge recombination are required. We use nonadiabatic molecular dynamics combined with time-domain density functional theory to study electron transfer from a PbS QD to the rhodamine B (RhB) molecule and subsequent electron return from RhB to the QD The time scale for the electron-hole recombination obtained for the system without defects agrees well with the experiment, while the simulated time scale for the charge separation is 10-fold longer than the experimental value. By performing an atomistic simulation with a sulfur vacancy, which is a common defect in PbS systems, we demonstrate that the defect accelerates the charge separation. This result is supported further by scaling arguments. Missing sulfur creates unsaturated chemical bonds on Pb atoms, which form the PbS conduction band. As a result, the QD lowest unoccupied molecular orbital (LUMO) is lowered in energy, and the LUMO density extends onto the adsorbed molecule, increasing the donor-acceptor interaction. The counterintuitive conclusion that defects are essential rather than detrimental to functioning of QD solar cells generates an unexpected view on the QD. surface chemistry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据