4.8 Article

Profiling Genome-Wide Chromatin Methylation with Engineered Posttranslation Apparatus within Living Cells

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 3, 页码 1048-1056

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja309412s

关键词

-

资金

  1. NIGMS [1R01GM096056]
  2. NIH [1DP2-OD007335]
  3. V Foundation for Cancer Research
  4. Starr Cancer Consortium
  5. Alfred W. Bressler Scholars Endowment Fund

向作者/读者索取更多资源

Protein methyltransferases (PMTs) have emerged as important epigenetic regulators in myriad biological processes in both normal physiology and disease conditions. However, elucidating PMT-regulated epigenetic processes has been hampered by ambiguous knowledge about in vivo activities of individual PMTs particularly because of their overlapping but nonredundant functions. To address limitations of conventional approaches in mapping chromatin modification of specific PMTs, we have engineered the chromatin-modifying apparatus and formulated a novel technology, termed clickable chromatin enrichment with parallel DNA sequencing (CliEn-seq), to probe genome-wide chromatin modification within living cells. The three-step approach of CliEn-seq involves in vivo synthesis of S-adenosyl-L-methionine (SAM) analogues from cell-permeable methionine analogues by engineered SAM synthetase (methionine adenosyltransferase or MAT), in situ chromatin modification by engineered PMTs, subsequent enrichment and sequencing of the uniquely modified chromatins. Given critical roles of the chromatin-modifying enzymes in epigenetics and structural similarity among many PMTs, we envision that the CliEn-seq technology is generally applicable in deciphering chromatin methylation events of individual PMTs in diverse biological settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据