4.8 Article

An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 43, 页码 16034-16037

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja408485m

关键词

-

资金

  1. National Science Council of Taiwan [NSC 101-2627-M-002-004, 101-2627-M-002-013]
  2. Academia Sinica

向作者/读者索取更多资源

Dopamine (DA) is an important neurotransmitter that is involved in neuronal signal transduction and several critical illnesses. However, the concentration of DA is extremely low in patients and is difficult to detect using existing electrochemical biosensors with detection limits typically around nanomolar levels (similar to 10(-9) M). Here, we developed a nanoelectronic device as a biosensor for ultrasensitive and selective DA detection by modifying DNA-aptamers on a multiple-parallel-connected (MPC) silicon nanowire field-effect transistor (referred to as MPC aptamer/SiNW-FET). Compared with conventional electrochemical methods, the MPC aptamer/SiNW-FET has been demonstrated to improve the limit of DA detection to <10(-11) M and to possess a detection specificity that is able to distinguish DA from other chemical analogues, such as ascorbic acid, catechol, phenethylamine, tyrosine, epinephrine, and norepinephrine. This MPC aptamer/SiNW-FET was also applied to monitor DA release under hypoxic stimulation from living PC12 cells. The real-time recording of the exocytotic DA induced by hypoxia reveals that the increase in intracellular Ca2+ that is required to trigger DA secretion is dominated by an extracellular Ca2+ influx, rather than the release of intracellular Ca2+ stores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据