4.8 Article

Helicity as a Steric Force: Stabilization and Helicity-Dependent Reversion of Colored o-Quinonoid Intermediates of Helical Chromenes

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 18, 页码 6872-6884

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja312027c

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), India
  2. CSIR

向作者/读者索取更多资源

Photolysis of regioisomeric helical chromenes 1 and 2 leads to colored reactive intermediates. While the latter generally decay quite rapidly, they are found to be longer lived in 1 and highly persistent in 2. The remarkable stability of the otherwise fleeting transient in 2 allowed isolation and structural characterization by X-ray crystallography. The structural analyses revealed that steric force inherent to the helical scaffold is the origin of stability as well as differentiation in the persistence of the intermediates of 1 and 2 (1Q and 2Q). The structure further shows that diphenylvinyl moiety in the TT isomer of 2Q gets splayed over the helical scaffold such that it is fraught with a huge steric strain to undergo required bond rotations to regenerate the precursor chromene. Otherwise, reversion of 2Q was found to occur at higher temperatures. Aazahelical chromenes 3 and 4 with varying magnitudes of helicity were designed in pursuit of o-quinonoid intermediates with graded activation barriers. Their photogenerated intermediates 3Q and 4Q were also isolated and structurally characterized. The activation barriers for thermal reversion of 2Q-4Q as determined from Arrhenius and Eyring plots, are found to correlate nicely with the helical turn, which decisively determines the steric force. The exploitation of helicity is thus demonstrated to develop a novel set of photoresponsive helicenes 2-4 that lead to colored intermediates exhibiting graded stability. It is further shown that the photochromism of 2-4 in conjunction with response of 2Q-4Q to external stimuli (acid, heat, and visible radiation) permits development of molecular logic gates with INHIBIT function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据