4.8 Article

Decoupling Interfacial Reactions between Plasmas and Liquids: Charge Transfer vs Plasma Neutral Reactions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 44, 页码 16264-16267

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja407149y

关键词

-

资金

  1. Air Force Office of Scientific Research under AFOSR [FA9550-11-1-0020]
  2. Case School of Engineering Alcoa Campus Partnership Program
  3. Camille Dreyfus Teacher-Scholar Awards program

向作者/读者索取更多资源

Plasmas (gas discharges) formed at the surface of liquids can promote a complex mixture of reactions in solution. Here, we decouple two classes of reactions, those initiated by electrons (electrolysis) and those initiated by gaseous neutral species, by examining an atmospheric-pressure microplasma formed in different ambients at the surface of aqueous saline (NaCl) solutions. Electrolytic reactions between plasma electrons and aqueous ions yield an excess of hydroxide ions (OH-), making the solution more basic, while reactions between reactive neutral species formed in the plasma phase and the solution lead to nitrous acid (HNO2), nitric acid (HNO3), and hydrogen peroxide (H2O2), making the solution more acidic. The relative importance of either reaction path is quantified by pH measurements, and we find that it depends directly on the composition of the ambient background gas. With a background gas of oxygen or argon, electron transfer reactions yielding excess OH- dominate, while HNO2 and HNO3 formed in the plasma and by the dissolution of nitrogen oxide (NOx) species dominate in the case of air and nitrogen. For pure nitrogen (N-2) gas, we observe a unique coupling between both reactions, where oxygen (O-2) gas formed via water electrolysis reacts in the bulk of the plasma to form NOx, HNO2, and HNO3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据