4.8 Article

Does Nature Click? Theoretical Prediction of an Enzyme-Catalyzed Transannular 1,3-Dipolar Cycloaddition in the Biosynthesis of Lycojaponicumins A and B

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 46, 页码 17638-17642

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja409928z

关键词

-

资金

  1. Australian Research Council [FT120100632]
  2. NSF [CHE-1059084]
  3. Chemistry-Biology Interface program [T32 GM 008496]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [1361104, 1059084] Funding Source: National Science Foundation

向作者/读者索取更多资源

Biosynthetic 1,3-dipolar cycloadditions are rare. No enzymes have yet been identified whose function is to catalyze this class of reactions. Recently, however, a 1,3-dipolar cycloaddition was proposed as a key step in the biosynthesis of two Lycopodium alkaloids, lycojaponicumins A and B. The lycojaponicumins' fused bicyclic tetrahydroisoxazole ring system was proposed to originate from a transannular 1,3-dipolar cycloaddition between a nitrone and an enone in a nine-membered macrocycle. We have used quantum mechanical calculations to predict whether this cycloaddition could constitute a feasible step in a biosynthetic pathway. Our calculations define a general computational approach for analyzing whether a putative biosynthetic reaction is likely to be enzyme-catalyzed. The quantum mechanically predicted rate of the uncatalyzed reaction in water is compared with the rate enhancement theoretically achievable when the reaction is catalyzed by a theozyme (theoretical enzyme). Density functional theory calculations (M06-2X) predict that the uncatalyzed transannular 1,3-dipolar cycloaddition of the putative lycojaponicumin precursor in water is moderately facile (Delta G double dagger = 21.5 kcal/mol, k = 10(-3) s(-1)) and that an enzyme could accelerate the cycloaddition by placing hydrogen bond donors around the enone while maintaining an otherwise nonpolar active site. The theoretical enzyme-catalyzed process has Delta G double dagger approximate to 17 kcal/mol, corresponding to a 2000-fold rate enhancement, and the predicted k(cat) (2 s(-1)) is similar to those of known enzymes involved in secondary metabolic pathways. Thus, theory predicts that the proposed transannular 1,3-dipolar cycloaddition is a plausible step in a biosynthetic pathway leading to the lycojaponicumins and suggests that dipolar cycloadditions can be accelerated by enzyme catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据