4.8 Article

New Functional Handle for Use as a Self-Reporting Contrast and Delivery Agent in Nanomedicine

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 25, 页码 9518-9524

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja403587c

关键词

-

资金

  1. Office of Naval Research [N00014-10-1-0527]
  2. Welch Foundation [A-0001]
  3. EPSRC [EP/G004897/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/G004897/1] Funding Source: researchfish

向作者/读者索取更多资源

The synthesis and photophysical characterization of a chromophore-bridged block copolymer system is presented. This system is based on a dithiomaleimide (DTM) functional group as a highly emissive functionality which can readily be incorporated into polymeric scaffolds. A key advantage of this new reporter group is its versatile chemistry, ease of further functionalization, and notably small size, which allows for ready incorporation without affecting or disrupting the self-assembly process critical to the formation of core shell polymeric contrast and drug delivery agents. We demonstrate the potential of this functionality with a diblock system which has been shown to be appropriate for micellization and, when in the micellar state, does not self quench The block copolymer is shown to be significantly more emissive than the lone dye, with a concentration independent emission and anisotropy profile from 1.5 mM to 0.15 mu M. An emission lifetime and anisotropy decay comparison of the block copolymer to its micelle displays that time-domain fluorescence lifetime imaging (FLIM) is able to rapidly resolve differences in the supramolecular state of this block dye block polymer system. Furthermore, the ability to resolve these differences in the supramolecular state means that the DTM micelles are capable of self reporting when disassembly occurs, simply by monitoring with FLIM. We demonstrate the great potential for in vitro applications that this system provides: by using :FLIM to Observe micelle disassembly in different vascular components of rat hippocampal tissue. In total this system represents a new class of in chain emitter which is appropriate for application in quantitative imaging and the tracking of particle degradation/disassembly events in biological environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据