4.8 Article

Molecular Insights into Clathrate Hydrate Nucleation at an Ice-Solution Interface

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 19, 页码 7278-7287

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja400521e

关键词

-

资金

  1. National Science and Engineering Research Counsel of Canada (NSERC), University of Calgary
  2. Westgrid computational facility

向作者/读者索取更多资源

Clathrate hydrates are specific cage-like structures formed by water molecules around a guest molecule. Despite the many studies that have been performed on clathrate hydrates, the actual molecular mechanism of both their homogeneous and heterogeneous nucleation has yet to be fully clarified. Here, by means of molecular simulations, we demonstrate how the interface of hexagonal ice can facilitate the heterogeneous nucleation of methane clathrate hydrate from an aqueous methane solution. Our results indicate an initial accumulation of methane molecules, which promote induction of defective structures, particularly coupled 5-8 ring defects, at the ice surface. Structural fluctuations promoted by these defective motifs assist hydrate cage formation next to the interface. The cage-like structures formed then act as a sink for methane molecules in the solution and enhance the stability and growth of an amorphous nucleus, which can evolve into a hydrate crystal upon annealing. These results are illustrative of how a surface that is structurally incompatible can serve to facilitate heterogeneous nucleation of a new crystalline phase. They should also further our general understanding of the formation of gas hydrates and their critical roles in various industrial and environmental processes, including carbon capture and storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据