4.8 Article

Interplay of Hydrogen Bonds and n→π* Interactions in Proteins

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 135, 期 49, 页码 18682-18688

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja4106122

关键词

-

资金

  1. EPSRC [EP/J001430]
  2. NSF [CHE-1124944]
  3. NIH [R01 AR044276, T32 GM008349]
  4. CHIR [289613]
  5. Engineering and Physical Sciences Research Council [EP/J001430/1] Funding Source: researchfish
  6. EPSRC [EP/J001430/1] Funding Source: UKRI

向作者/读者索取更多资源

Protein structures are stabilized by multiple weak interactions, including the hydrophobic effect, hydrogen bonds, electrostatic effects, and van der Waals interactions. Among these interactions, the hydrogen bond is distinct in having its origins in electron delocalization. Recently, another type of electron delocalization, the n ->pi* interaction between carbonyl groups, has been shown to play a role in stabilizing protein structure. Here we examine the interplay between hydrogen bonding and n ->pi* interactions. To address this issue, we used data available from high-resolution protein crystal structures to interrogate asparagine side-chain oxygen atoms that are both acceptors of a hydrogen bond and donors of an n ->pi* interaction. Then we employed natural bond orbital analysis to determine the relative energetic contributions of the hydrogen bonds and n ->pi* interactions in these systems. We found that an n ->pi* interaction is worth similar to 5-25% of a hydrogen bond and that stronger hydrogen bonds tend to attenuate or obscure n ->pi* interactions. Conversely, weaker hydrogen bonds correlate with stronger n ->pi* interactions and demixing of the orbitals occupied by the oxygen lone pairs. Thus, these two interactions conspire to stabilize local backbone side-chain contacts, which argues for the inclusion of n ->pi* interactions in the inventory of non-covalent forces that contribute to protein stability and thus in force fields for biomolecular modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据