4.8 Article

Tertiary DNA Structure in the Single-Stranded hTERT Promoter Fragment Unfolds and Refolds by Parallel Pathways via Cooperative or Sequential Events

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 11, 页码 5157-5164

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja210399h

关键词

-

资金

  1. NIH [DK081191-01, GM085585]
  2. NSF [CHE-1026532]
  3. National Foundation for Cancer Research [VONHOFF0601]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [1026532] Funding Source: National Science Foundation

向作者/读者索取更多资源

The discovery of G-quadruplexes and other DNA secondary elements has increased the structural diversity of DNA well beyond the ubiquitous double helix. However, it remains to be determined whether tertiary interactions can take place in a DNA complex that contains more than one secondary structure. Using a new data analysis strategy that exploits the hysteresis region between the mechanical unfolding and refolding traces obtained by a laser-tweezers instrument, we now provide the first convincing kinetic and thermodynamic evidence that a higher order interaction takes place between a hairpin and a G-quadruplex in a single-stranded DNA fragment that is found in the promoter region of human telomerase. During the hierarchical unfolding or refolding of the DNA complex, a 15-nucleotide hairpin serves as a common species among three intermediates. Moreover, either a mutant that prevents this hairpin formation or the addition of a DNA fragment complementary to the hairpin destroys the cooperative kinetic events by removing the tertiary interaction mediated by the hairpin. The coexistence of the sequential and the cooperative refolding events provides direct evidence for a unifying kinetic partition mechanism previously observed only in large proteins and complex RNA structures. Not only does this result rationalize the current controversial observations for the long-range interaction in complex single-stranded DNA structures, but also this unexpected complexity in a promoter element provides additional justification for the biological function of these structures in cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据