4.8 Article

Structure/Processing/Properties Relationships in Nanoporous Nanoparticles As Applied to Catalysis of the Cathodic Oxygen Reduction Reaction

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 20, 页码 8633-8645

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja3019498

关键词

-

资金

  1. U.S. Department of Energy, Office of Basic Energy Sciences [DE-FG02-05ER15727]

向作者/读者索取更多资源

We present a comprehensive experimental study of the formation and activity of dealloyed nanoporous Ni/Pt alloy nanoparticles for the cathodic oxygen reduction reaction. By addressing the kinetics of nucleation during solvothermal synthesis we developed a method to control the size and composition of Ni/Pt alloy nanoparticles over a broad range while maintaining an adequate size distribution. Electrochemical dealloying of these size-controlled nanoparticles was used to explore conditions in which hierarchical nanoporosity within nanoparticles can evolve. Our results show that in order to evolve fully formed porosity, particles must have a minimum diameter of similar to 15 nm, a result consistent with the surface kinetic processes occurring during dealloying. Nanoporous nanoparticles possess ligaments and voids with diameters of approximately 2 nm, high surface area/mass ratios usually associated with much smaller particles, and a composition consistent with a Pt-skeleton covering a Ni/Pt alloy core. Electrochemical measurements show that the mass activity for the oxygen reduction reaction using carbon-supported nanoporous Ni/Pt nanoparticles is nearly four times that of commercial Pt/C catalyst and even exceeds that of comparable nonporous Pt-skeleton Ni/Pt alloy nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据