4.8 Article

Meso-Structured Platinum Thin Films: Active and Stable Electrocatalysts for the Oxygen Reduction Reaction

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 18, 页码 7758-7765

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja2120162

关键词

-

资金

  1. Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences [DE-SC0001060]
  3. Villum Kann Rasmussen Foundation

向作者/读者索取更多资源

Improving both the activity and the stability of the cathode catalyst in platinum-based polymer electrolyte fuel cells is a key technical challenge. Here, we synthesize a high surface area meso-structured Pt thin film that exhibits higher specific activity for the oxygen reduction reaction (ORR) than commercial carbon-supported Pt nanoparticles (Pt/C). An accelerated stability test demonstrates that the meso-structured Pt thin film also displays significantly enhanced stability as compared to the commercial Pt/C catalyst. Our study reveals the origin of the high turnover frequency (TOF), and excellent durability is attributed to the meso-structure, which yields a morphology with fewer undercoordinated Pt sites than Pt/C nanoparticles, a key difference with substantial impact to the surface chemistry. The improved catalyst activity and stability could enable the development of a high-performance gas diffusion electrode that is resistant to corrosion even under the harsh conditions of start-up, shut-down, and/or hydrogen starvation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据