4.8 Article

Spiroligozymes for Transesterifications: Design and Relationship of Structure to Activity

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 44, 页码 18345-18353

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja3069648

关键词

-

资金

  1. Defense Threat Reduction Agency (DOD-DTRA) [HDTRA1-09-1-0009]
  2. National Institute of General Medical Sciences, National Institutes of Health [GM36700, GM067866]
  3. National Science Foundation [TG-CHE100059]

向作者/读者索取更多资源

Transesterification catalysts based. on stereochemically defined, modular, functionalized ladder-molecules (named spiroligozymes) were designed, using the inside-out design strategy, and mutated synthetically to improve catalysis. A series of stereochemically and regiochemically diverse bifunctional spiroligozymes were first synthesized to identify the best arrangement of a pyridine as a general base catalyst and an alcohol nucleophile to accelerate attack on vinyl trifluoroacetate as an electrophile. The best bifunctional spiroligozyme reacted with vinyl trifluoroacetate to form an acyl-spiroligozyme conjugate 2.7 X 10(3)-fold faster than the background reaction with a benzyl alcohol. Two trifunctional spiroligozymes were then synthesized that combined a urea with the pyridine and alcohol to act as an oxyanion hole and activate the bound acyl-spiroligozyme intermediate to enable acyl-transfer to methanol. The best trifunctional spiroligozyme carries out multiple turnovers and acts as a transesterification catalyst with k(1)/k(uncat) of 2.2 X 10(3) and k(2)/k(uncat) of 1.3 X 10(2). Quantum mechanical calculations identified the four transition states of the catalytic cycle and provided a detailed view of every stage of the transesterification reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据