4.8 Article

Rollover Cyclometalation Pathway in Rhodium Catalysis: Dramatic NHC Effects in the C-H Bond Functionalization

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 134, 期 42, 页码 17778-17788

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja308205d

关键词

-

资金

  1. Korea Research Foundation [KRF-2008-C00024]
  2. MIRC [NRF-2011-0001322]
  3. WCU [R31-2008-000-10055-0]
  4. National Research Foundation of Korea [R31-2012-000-10055-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Organometallic chelates are readily obtained upon coordination of metal species to multidentate ligands. Because of the robust structural nature, chelation frequently serves as a driving force in the molecular assembly and chemical architecture, and they are used also as an efficient catalyst in numerous reactions. Described herein is the development of a Rh(NHC) catalytic system for the hydroarylation of alkenes and alkynes with 2,2'-bipyridines (bipy) and 2,2'-biquinolines; the most representative chelating molecules. Initially generated (bipy)Rh(NHC) chelates become labile because of the strong trans-effect of N-heterocyclic carbenes, thus weakening a rhodium-pyridyl bond, which is trans to the bound NHC. Subsequent rollover cyclometalation leads to the C-H bond activation, eventually giving rise to double functionalization of chelate molecules. Density functional calculations are in good agreement with our mechanistic proposal based on the experimental data. The present study elucidated for the first time the dramatic NHC effects on the rollover cyclometalation pathway enabling highly efficient and selective bisfunctionalization of 2,2'-bipyridines and 2,2'-biquinolines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据