4.8 Article

Guanine-Rich RNAs and DNAs That Bind Heme Robustly Catalyze Oxygen Transfer Reactions

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 6, 页码 1877-1884

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja108571a

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC)

向作者/读者索取更多资源

Diverse guanine-rich RNAs and DNAs that fold to form guanine quadruplexes are known to form tight complexes with Fe(III) heme. We show here that a wide variety of such complexes robustly catalyze two-electron oxidations, transferring oxygen from hydrogen peroxide to thioanisole, indole, and styrene substrates. Use of O-18-labeled hydrogen peroxide reveals the source of the oxygen transferred to form thioanisole sulfoxide and styrene oxide to be the activated ferryl moiety within these systems. Hammett analysis of the kinetics of thioanisole sulfoxide formation is unable to distinguish between a one-step, direct oxygen transfer and a two-step, oxygen rebound mechanism for this catalysis. Oxygen transfer to indole produces a range of products, including indigo and related dyes. Docking of heme onto a high-resolution structure of the G-quadruplex fold of Bcl-2 promoter DNA, which both binds heme and transfers oxygen, suggests a relatively open active site for this class of ribozymes and deoxyribozymes. That heme-dependent catalysis of oxygen transfer is a property of many RNAs and DNAs has ramifications for primordial evolution, enzyme design, cellular oxidative disease, and anticancer therapeutics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据