4.8 Article

Iridium-Catalyzed Hydrogenation of N-Heterocyclic Compounds under Mild Conditions by an Outer-Sphere Pathway

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 19, 页码 7547-7562

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja2014983

关键词

-

资金

  1. Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-FG02-84ER13297]
  2. Spanish MICINN
  3. CNRS
  4. Ministere de l'Enseignement Superieur et de la Recherche

向作者/读者索取更多资源

A new homogeneous iridium catalyst gives hydrogenation of quinolines under unprecedentedly mild conditions-as low as 1 atm of H(2) and 25 degrees C. We report air- and moisture-stable iridium(I) NHC catalyst precursors that are active for reduction of a wide variety of quinolines having functionalities at the 2-, 6-, and 8- positions. A combined experimental and theoretical study has elucidated the mechanism of this reaction. DFT studies on a model Ir complex show that a conventional inner-sphere mechanism is disfavored relative to an unusual stepwise outer-sphere mechanism involving sequential proton and hydride transfer. All intermediates in this proposed mechanism have been isolated or spectroscopically characterized, including two new iridium(III) hydrides and a notable cationic iridium(III) dihydrogen dihydride complex. DFT calculations on full systems establish the coordination geometry of these iridium hydrides, while stoichiometric and catalytic experiments with the isolated complexes provide evidence for the mechanistic proposal. The proposed mechanism explains why the catalytic reaction is slower for unhindered substrates and why small changes in the ligand set drastically alter catalyst activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据