4.8 Article

Steam Etched Porous Graphene Oxide Network for Chemical Sensing

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 39, 页码 15264-15267

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja205693t

关键词

-

资金

  1. National Science Foundation [DMR CAREER 0955612, ECCS 925882]
  2. NSF-NSEC at Northwestern University [EEC 0647560]
  3. Defense Science and Technology Agency of Singapore
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [0955612] Funding Source: National Science Foundation

向作者/读者索取更多资源

Oxidative etching of graphene flakes was observed to initiate from edges and the occasional defect sites in the basal plane, leading to reduced lateral size and a small number of etch pits. In contrast, etching of highly defective graphene oxide and its reduced form resulted in rapid homogeneous fracturing of the sheets into smaller pieces. On the basis of these observations, a slow and more controllable etching route was designed to produce nanoporous reduced graphene oxide sheets by hydrothermal steaming at 200 degrees C. The degree of etching and the concomitant porosity can be conveniently tuned by etching time. In contrast to nonporous reduced graphene oxide annealed at the same temperature, the steamed nanoporous graphene oxide exhibited nearly 2 orders of magnitude increase in the sensitivity and improved recovery time when used as chemiresistor sensor platform for NO2 detection. The results underscore the efficacy of the highly distributed nanoporous network in the low temperature steam etched GO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据