4.8 Article

A Step beyond the Feltham-Enennark Notation: Spectroscopic and Correlated ab lnitio Computational Support for an Antiferromagnetically Coupled M(II)-(NO)- Description of Tp*M(NO) (M = Co, Ni)

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 46, 页码 18785-18801

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja206042k

关键词

-

资金

  1. Max-Planck-Gesellshaft
  2. NSF [CHE-0841786]
  3. Royal Commission
  4. Cornell University
  5. Department of Energy, Office of Basic Energy Sciences
  6. National Institutes of Health [P41RR001209]
  7. National Center for Research Resources
  8. U.S. Department of Energy, Office of Biological Environmental Research
  9. Direct For Mathematical & Physical Scien [0841786] Funding Source: National Science Foundation
  10. Division Of Chemistry [0841786] Funding Source: National Science Foundation

向作者/读者索取更多资源

Multiple spectroscopic and computational methods were used to characterize the ground-state electronic structure of the novel {CoNO}(9) species Tp*Co(NO) (Tp* = hydro-tris (3,5-Me-2-pyrazolyl)borate). The metric parameters about the metal center and the pre-edge region of the Co K-edge X-ray absorption spectrum were reproduced by density functional theory (DFT), providing a qualitative description of the Co-NO bonding interaction as a Co(II) (S-Co = 3/2) metal center, antiferromagnetically coupled to a triplet NO- anion (S-NO = 1), an interpretation of the electronic structure that was validated by ab initio multireference methods (CASSCF/MRCI). Electron paramagnetic resonance (EPR) spectroscopy revealed significant g-anisotropy in the S = 1/2, ground state, but the linear-response DFT performed poorly at calculating the g-values. Instead, CASSCF/MRCI computational studies in conjunction with quasi-degenerate perturbation theory with respect to spin orbit coupling were required for obtaining accurate modeling of the molecular g-tensor. The computational portion of this work was extended to the diamagnetic Ni analogue of the Co complex, Tp*Ni(NO), which was found to consist of a Ni(II) (S-Ni = 1) metal center antiferromagnetically coupled to an S-NO = 1 NO-. The similarity between the Co and Ni complexes contrasts with the previously studied Cu analogues, for which a Cu(I) bound to NO0 formulation has been described. This discrepancy will be discussed along with a comparison of the DFT and ab initio computational methods for their ability to predict various spectroscopic

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据