4.8 Article

Intermolecular Alignment in Y145Stop Human Prion Protein Amyloid Fibrils Probed by Solid-State NMR Spectroscopy

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 35, 页码 13934-13937

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja206469q

关键词

-

资金

  1. National Institutes of Health [R01GM094357, R01NS038604, R01NS044158]

向作者/读者索取更多资源

The Y145Stop mutant of human prion protein, huPrP23-144, has been linked to PrP cerebral amyloid angiopathy, an inherited amyloid disease, and also serves as a valuable in vitro model for investigating the molecular basis of amyloid strains. Prior studies of huPrP23-144 amyloid by magic-angle-spinning (MAS) solid-state NMR spectroscopy revealed a compact beta-rich amyloid core region near the C-terminus and an unstructured N-terminal domain. Here, with the focus on understanding the higher-order architecture of huPrP23-144 fibrils, we probed the intermolecular alignment of beta-strands within the amyloid core using MAS NMR techniques and fibrils formed from equimolar mixtures of N-15-labeled protein and C-13-huPrP23-144 prepared with [1,3-C-13(2)] or [2-C-13]glycerol. Numerous intermolecular correlations involving backbone atoms observed in 2D N-15-C-13 spectra unequivocally suggest an overall parallel in-register alignment of the beta-sheet core. Additional experiments that report on intermolecular N-15-(CO)-C-13 and N-15-C-13 alpha dipolar couplings yielded an estimated strand spacing that is within similar to 10% of the distances of 4.7-4.8 angstrom typical for parallel beta-sheets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据