4.8 Article

Sequential Activation and Deactivation of Protein Function Using Spectrally Differentiated Caged Phosphoamino Acids

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 29, 页码 11038-11041

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja2028074

关键词

-

资金

  1. NIH Cell Migration Consortium [GM064346]
  2. NIGMS [T32-GM08334]
  3. Swiss National Science Foundation

向作者/读者索取更多资源

Photo labile caging groups, including the 1-(2-nitrophenyl)ethyl (NPE) group, have been applied to probe many biological processes, including protein phosphorylation. Although studies with NPE-caged phosphoamino acids have provided valuable information, these investigations have been limited to the use of only one caged species in a single experiment. To expand the scope of these tools, we have developed an approach for sequentially uncaging two different phosphopeptides in one system, enabling interrogation of multiple phosphorylation events. We present the synthesis of [7-(diethylamino)coumarin-4-yl]methyl (DEACM)-caged phosphorylated serine, threonine, and tyrosine building blocks for Fmoc-based solid-phase peptide synthesis to allow convenient incorporation of these residues into peptides and proteins. Exposure of DEACM- and NPE-caged phosphopeptides to 420 nm light selectively releases the DEACM group without affecting the NPE-caged peptide. This then enables a subsequent irradiation event at 365 nm to remove the NPE group and liberate a second phosphopeptide. We demonstrate the versatility of this general sequential uncaging approach by applying it to control Wip1 phosphatase with two wavelengths of light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据