4.8 Article

Stimulus-Responsive Self-Assembly: Reversible, Redox-Controlled Micellization of Polyferrocenylsilane Diblock Copolymers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 23, 页码 8903-8913

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja1105656

关键词

-

资金

  1. EU
  2. EPSRC
  3. University of Bristol
  4. NSERC Canada

向作者/读者索取更多资源

In depth studies of the use of electron transfer reactions as a means to control the self-assembly of diblock copolymers with an electroactive metalloblock are reported. Specifically, the redox-triggered self-assembly of a series of polystyrene-block-polyferrocenylsilane (PS-b-PFS) diblock copolymers in dichloromethane solution is described. In the case of the amorphous polystyrene(n)-b-poly(ferrocenylphenylmethylsilane)(m) diblock copolymers (PSn-b-PFMPSm: n = 548, m = 73; n = 71, m = 165; where n and m are the number-averaged degrees of polymerization), spherical micelles with an oxidized PFS core and a PS corona were formed upon oxidation of more than 50% of the ferrocenyl units by [N(C6H4Br-4)(3)][SbX6] (X = Cl, F). Analogous block copolymers containing a poly(ferrocenylethylmethylsilane) (PFEMS) metalloblock, which has a lower glass transition temperature, behaved similarly. However, in contrast, on replacement of the amorphous metallopolymer blocks by semicrystalline poly(ferrocenyldimethylsilane) (PFDMS) segments, a change in the observed morphology was detected with the formation of ribbon-like micelles upon oxidation of PS535-b-PFDMS103 above the same threshold value. Again the coronas consisted of fully solvated PS and the core consisted of partially to fully oxidized PFS associated with the counteranions. When oxidation was performed with [N(C6H4Br-4)(3)] [SbF6], reduction of the cores of the spherical or ribbon-like micelles with [Co(eta-C5Me5)(2)] enabled full recovery of the neutral chains and no significant chain scission was detected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据