4.8 Article

Assembly and Separation of Semiconductor Quantum Dot Dimers and Trimers

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 45, 页码 18062-18065

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja2077284

关键词

-

资金

  1. German Science Foundation [SFB 625]

向作者/读者索取更多资源

Repeated precipitation of colloidal semiconductor quantum dots (QD) from a good solvent by adding a poor solvent leads to an increasing number of QD oligomers after redispersion in the good solvent. By using density gradient ultracentrifugation we have been able to separate QD monomer, dimer, and trimer fractions from higher oligomers in such solutions. In the corresponding fractions QD dimers and trimers have been enriched up to 90% and 64%, respectively. Besides directly coupled oligomers, QD dimers and trimers were also assembled by linkage with a rigid terrylene diimide dye (TDI) and separated again by ultracentrifugation. High-resolution transmission electron micrographs show that the interparticle distances are clearly larger than those for directly coupled dots proving that the QDs indeed are cross-linked by the dye. Moreover, energy transfer from the QDs to the TDI bridge has been observed. Individual oligomers (directly coupled or dye-linked) can be readily deposited on a substrate and studied simultaneously by scanning force and optical microscopy. Our simple and effective scheme is applicable to a wide range of ligand stabilized colloidal nanoparticles and opens the way to a detailed study of electronic coupling in, e.g., QD molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据