4.8 Article

Platinum Interference with siRNA Non-seed Regions Fine-Tunes Silencing Capacity

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 31, 页码 11977-11984

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja111082e

关键词

-

资金

  1. FLAK (Research School in Medicinal Sciences at Lund University)
  2. Cancerfonden
  3. Crafoordska stiftelsen
  4. Kungliga fysiografiska sallskapet i Lund
  5. Stiftelsen Landshovding Per Westlings minnesfond

向作者/读者索取更多资源

Knowledge concerning the molecular mechanisms governing the influence of non-coding RNAs on protein production has emerged rapidly during the past decade. Today, two main research areas can be identified, one oriented toward the use of artificially introduced siRNAs for manipulation of gene expression, and the other one focused on the function of endogenous miRNAs. In both cases, the active molecule consists of a similar to 20-nucleotide-long RNA duplex. In the siRNA case, improved systemic stability is of central interest for its further development toward clinical applications. With respect to miRNA processing and function, understanding its influence on mRNA targeting and the silencing ability of individual miRNAs, e.g., under pathological conditions, remains a scientific challenge. In the present study, a model system is presented where the influence of the two clinically used anticancer drugs, cisplatin and oxaliplatin, on siRNA's silencing capacity has been evaluated. More specifically, siRNAs targeting the 3' UTR region of Wnt-5a mRNA (NM_003352) were constructed, and the biologically active antisense RNA strand was pre-platinated. Platinum adducts were detected and characterized by a combination of gel electrophoresis and MALDI-MS techniques, and the silencing capacity was evaluated in cellular luciferase-expressing systems using HB2 cells. Data show that platination of the antisense strand of the siRNAs results in adducts with protection against hydrolytic cleavage in the proximity of the platination sites, i.e., with altered degradation patterns compared to native RNAs. The MALDI-MS method was successfully used to further identify and characterize platinated RNA, with the naturally occurring platinum isotopic patterns serving as sensitive fingerprints for metalated sites. Expression assays all confirm biological activity of antisense-platinated siRNAs, here with platination sites located outside of the seed region. A significant reduction of silencing capacity was observed as a general trend, however. Of the two complexes studied, oxaliplatin exhibits the larger influence, thus indicating subtle differences between the abilities of cis- and oxaliplatin to interfere with si- and miRNA processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据