4.8 Article

Mechanistic and Physiological Implications of the Interplay among Iron-Sulfur Clusters in [FeFe]-Hydrogenases. A QM/MM Perspective

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 46, 页码 18742-18749

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja205542k

关键词

-

资金

  1. Cluster of Excellence Unifying concepts in catalysis (UNICAT)
  2. Technische Universitat Berlin

向作者/读者索取更多资源

Key stereoelectronic properties of Desulfovibrio desulfuricans [FeFe]-hydrogenase (DdH) were investigated by quantum mechanical description of its complete inorganic core, which includes a Fe(6)S(6) active site (the H-cluster), as well as two ancillary Fe(4)S(4) assemblies (the F and F' clusters). The partially oxidized, active-ready form of DdH is able to efficiently bind dihydrogen, thus starting H(2) oxidation catalysis. The calculations allow us to unambiguously assign a mixed Fe(H)Fe(I) state to the catalytic core of the active-ready enzyme and show that H(2) uptake exerts subtle, yet crucial influences on the redox properties of DdH. In fact, H(2) binding can promote electron transfer from the H-cluster to the solvent-exposed F'-cluster, thanks to a 50% decrease of the energy gap between the HOMO (that is localized on the H-cluster) and the LUMO (which is centered on the F'-cluster). Our results also indicate that the binding of the redox partners of DdH in proximity of its F'-cluster can trigger one-electron oxidation of the H(2)-bound enzyme, a process that is expected to have an important role in H(2) activation. Our findings are analyzed not only from a mechanistic perspective, but also in consideration of the physiological role of DdH. In fact, this enzyme is known to be able to catalyze both the oxidation and the evolution of H(2), depending on the cellular metabolic requirements. Hints for the design of targeted mutations that could lead to the enhancement of the oxidizing properties of DdH are proposed and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据