4.8 Article

P450 Fingerprinting Method for Rapid Discovery of Terpene Hydroxylating P450 Catalysts with Diversified Regioselectivity

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 133, 期 10, 页码 3242-3245

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja109590h

关键词

-

资金

  1. University of Rochester
  2. Direct For Mathematical & Physical Scien
  3. Division Of Chemistry [0946653] Funding Source: National Science Foundation
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [0840410] Funding Source: National Science Foundation

向作者/读者索取更多资源

Engineered P450 enzymes constitute attractive catalysts for the selective oxidation of unactivated C-H bonds in complex molecules. A current bottleneck in the use of P450 catalysis for chemical synthesis is the time and effort required to identify the P450 variant(s) with the desired level of activity and selectivity. In this report, we describe a method to map the active site configuration of engineered P450 variants in high throughput using a set of semisynthetic chromogenic probes. Through analysis of the resulting 'fingerprints', reliable predictions can be made regarding the reactivity of these enzymes toward complex substrates structurally related to the fingerprint probes. In addition, fingerprint analysis offers a convenient and time-effective means to assess the regioselectivity properties of the fingerprinted P450s. The described approach can represent a valuable tool to expedite the discovery of P450 oxidation catalysts for the functionalization of relevant natural products such as members of the terpene family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据