4.8 Article

Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 21, 页码 7472-7477

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja102267j

关键词

-

资金

  1. MARCO MSD Focus Center
  2. Intel
  3. Office of Naval Research
  4. NSF

向作者/读者索取更多资源

Ni(OH)(2) nanocrystals grown on graphene sheets with various degrees of oxidation are investigated as electrochemical pseudocapacitor materials for potential energy storage applications. Single-crystalline Ni(OH)(2) hexagonal nanoplates directly grown on lightly oxidized, electrically conducting graphene sheets (GS) exhibit a high specific capacitance of similar to 1335 F/g at a charge and discharge current density of 2.8 A/g and similar to 953 F/g at 45.7 A/g with excellent cycling ability. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. A simple physical mixture of pre-synthesized Ni(OH)(2) nanoplates and graphene sheets shows lower specific capacitance, highlighting the importance of direct growth of nanomaterials on graphene to impart intimate interactions and efficient charge transport between the active nanomaterials and the conducting graphene network. Single-crystalline Ni(OH)(2) nanoplates directly grown on graphene sheets also significantly outperform small Ni(OH)(2) nanoparticles grown on heavily oxidized, electrically insulating graphite oxide (GO), suggesting that the electrochemical performance of these composites is dependent on the quality of graphene substrates and the morphology and crystallinity of the nanomaterials grown on top. These results suggest the importance of rational design and synthesis of graphene-based nanocomposite materials for high-performance energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据