4.8 Article

Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 21, 页码 7436-7444

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja101564f

关键词

-

资金

  1. Marie Curie Research Training Networks [MRTN-CT-2006-032474]
  2. Swiss Federal Office of Energy [102326]
  3. Ministry of Education of the Czech Republic [1M6198959201, MSM6198959218]
  4. Academy of Sciences of the Czech Republic [KAN115600801]

向作者/读者索取更多资源

Sustainable hydrogen production through photoelectrochemical water splitting using hematite (alpha-Fe2O3) is a promising approach for the chemical storage of solar energy, but is complicated by the material's nonoptimal optoelectronic properties. Nanostructuring approaches have been shown to increase the performance of hematite, but the ideal nanostructure giving high efficiencies for all absorbed light wavelengths remains elusive. Here, we report for the first time mesoporous hematite photoelectodes prepared by a solution-based colloidal method which yield water-splitting photocurrents of 0.56 mA cm(-2) under standard conditions (AM 1.5G 100 mW cm(-2), 1.23 V vs reversible hydrogen electrode, RHE) and over 1.0 mA cm(-2) before the dark current onset (1.55 V vs RHE). The sintering temperature is found to increase the average particle size, and have a drastic effect on the photoactivity. X-ray photoelectron spectroscopy and magnetic measurements using a SQUID magnetometer link this effect to the diffusion and incorporation of dopant atoms from the transparent conducting substrate. In addition, examining the optical properties of the films reveals a considerable change in the absorption coefficient and onset properties, critical aspects for hematite as a solar energy converter, as a function of the sintering temperature. A detailed investigation into hematite's crystal structure using powder X-ray diffraction with Rietveld refinement to account for these effects correlates an increase in a C-3v-type crystal lattice distortion to the improved optical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据