4.8 Article

Mechanism and Activity of Photocatalytic Oxygen Evolution on Titania Anatase in Aqueous Surroundings

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 37, 页码 13008-13015

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja105340b

关键词

-

资金

  1. NSF of China [20825311, 20773026, 20721063]
  2. Science and Technology Commission of Shanghai Municipality [08DZ2270500, 09ZR1401900]
  3. Shanghai Institute of Higher Learning
  4. Special Funds for Major State Basic Research Projects of China [2005CB321700]

向作者/读者索取更多资源

Due to its high overpotential and low efficiency, the conversion of water to O-2 using solar energy remains a bottleneck for photocatalytic water splitting. Here the microscopic mechanisms of the oxygen evolution reaction (OER) on differently structured anatase surfaces in aqueous surroundings, namely, (101), (001), and (102), are determined and compared systematically by combining first-principles density functional theory calculations and a parallel periodic continuum solvation model. We show that OER involves the sequential removal of protons from surface oxidative species, forming surface peroxo and superoxo intermediates. The initiating step, the first proton removal, dictates the high overpotential. Only at an overpotential of 0.7 V (1.93 V vs SHE) does this rate-controlling step become surmountable at room temperature: the free energy change of the step is 0.69, 0.63, and 0.61 eV for (101), (102), and (001) surfaces, respectively. We therefore conclude that (i) OER is not sensitive to the local surface structure of anatase and (ii) visible light (

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据