4.8 Article

Preferential CO Oxidation in Hydrogen: Reactivity of Core-Shell Nanoparticles

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 21, 页码 7418-7428

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja101108w

关键词

-

资金

  1. DOE-BES, Chemical Sciences Division [DE-FG02-05ER15731]
  2. S.C. Johnson Son
  3. U.S. Department of Energy's Office of Biological and Environmental Research
  4. Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725, DE-AC02-06CH11357, DE-AC02-05CH11231]

向作者/读者索取更多资源

We report on the first-principles-guided design, synthesis, and characterization of core shell nanoparticle (NP) catalysts made of a transition metal core (M = Ru, Rh, Ir, Pd, or Au) covered with a similar to 1-2 monolayer thick shell of Pt atoms (i.e., a M@Pt core shell NP). An array of experimental techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, and temperature-programmed reaction, are employed to establish the composition of the synthesized NPs. Subsequent studies of these NPs' catalytic properties for preferential CO oxidation in hydrogen-rich environments (PROX), combined with Density Functional Theory (DFT)-based mechanistic studies, elucidate important trends and provide fundamental understanding of the reactivity of Pt shells as a function of the core metal. Both the PROX activity and selectivity of several of these M@Pt core shell NPs are significantly improved compared to monometallic and bulk nonsegregated bimetallic nanoalloys. Among the systems studied, Ru@Pt core shell NPs exhibit the highest PROX activity, where the CO oxidation is complete by 30 degrees C (1000 ppm CO in H(2)). Therefore, despite their reduced Pt content, M@Pt core shell NPs afford the design of more active PROX catalysts. DFT studies suggest that the relative differences in the catalytic activities for the various core shell NPs originate from a combination of (i) the relative availability of CO-free Pt surface sites on the M@Pt NPs, which are necessary for O(2) activation, and (ii) a hydrogen-mediated low-temperature CO oxidation process that is clearly distinct from the traditional bifunctional CO oxidation mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据