4.8 Article

Kinetic Analysis of the M2 Proton Conduction of the Influenza Virus

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 50, 页码 17695-17697

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja108458u

关键词

-

资金

  1. NIH [AI067438]

向作者/读者索取更多资源

The M2 protein of the flu virus forms a proton selective channel that is necessary for viral replication. The channel has a slow rate of conduction but attains near perfect selectivity for protons. Many models have been proposed to explain the mechanism of proton conduction based on whole cell channel recordings and molecular dynamics simulations, but a detailed kinetic analysis of the channel activity has not yet been performed. We obtained detailed conduction vs pH measurements for M2 and a number of its variants using a sensitive and reproducible liposome proton flux assay. The proton transport follows Michaelis-Menten-like kinetics with two saturation steps: one pseudosaturation at pH similar to 5.5, and another full saturation at pH similar to 4. The heart of the mechanism is the pore-lining His37 and Trp41. NMR measurements suggest that histidine and tryptophan act in unison to transport protons down the concentration gradient. The log of apparent K-m derived from the kinetics data matches closely to the histidine pK(a) and correlates with chemical shift perturbation of the Trp41 gate, indicating that histidine protonation and opening of the channel gate are synchronized events. Finally, mutagenesis and structural analysis identified key residues that affect the rate of conduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据