4.8 Article

Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm)

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 12, 页码 4438-4444

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja100040p

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

Monodisperse mesoporous anatase titania beads with high surface areas and tunable pore size and grain diameter have been prepared through a combined sol-gel and solvothermal process in the presence of hexadecylamine (HDA) as a structure-directing agent. The monodispersity of the resultant titania beads, along with the spherical shape, can be controlled by varying the amount of structure-directing agent involved in the sol-gel process. The diameter of the titania beads is tunable from similar to 320 to 1150 nm by altering the hydrolysis and condensation rates of the titanium alkoxide. The crystallite size, specific surface area (from 89 to 120 m(2)/g), and pore size distribution (from 14 to 23 nm) of the resultant materials can be varied through a mild solvothermal treatment in the presence of varied amounts of ammonia. On the basis of the results of small-angle XRD, high-resolution SEM/TEM, and gas sorption characterization, a mechanism for the formation of the monodisperse precursor beads has been proposed to illustrate the role of HDA in determining the morphology and monodispersity during the sol-gel synthesis. The approach presented in this study demonstrates that simultaneous control of the physical properties, including specific surface area, mesoporosity, crystallinity, morphology, and monodispersity, of the titania materials can be achieved by a facile sol-gel synthesis and solvothermal process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据