4.8 Article

Ethoxycarbonyl-Based Organic Electrode for Li-Batteries

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 18, 页码 6517-6523

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja1012849

关键词

-

向作者/读者索取更多资源

Currently, batteries are being both considered and utilized in a variety of large-scale applications. Materials sustainability stands as a key issue for future generations of batteries. One alternative to the use of a finite supply of mined materials is the use of renewable organic materials. However, before addressing issues regarding the sustainability of a given organic electrode, fundamental questions relating to the structure function relationships between organic components and battery performance must first be explored. Herein we report the synthesis, characterization, and device performance of an organic salt, lithium 2,6-bis(ethoxycarbonyl)-3,7-dioxo-3,7-dihydro-s-indacene-1,5-bis(olate), capable of reversibly intercalating with minimal polarization 1.8 Li per unit formula over two main voltage plateaus located at similar to 1.96 and similar to 1.67 V (vs. Li/Li+), leading to an overall capacity of 125 mAh/g. Proton NMR and in situ XRD analyses of battery cycling versus Li at room temperature reveal that the insertion-deinsertion process is fully reversible with the dips in the voltage composition traces, which are associated with changes in the 3D structural packing of the electrochemically active molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据