4.8 Article

Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 132, 期 21, 页码 7528-7539

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja1023699

关键词

-

资金

  1. ConocoPhillips Company

向作者/读者索取更多资源

The very large number of distinct structures that are known for metal-organic frameworks (MOFs) and related materials presents both an opportunity and a challenge for identifying materials with useful properties for targeted applications. We show that efficient computational models can be used to evaluate large numbers of MOFs for kinetic separations of light gases based on finding materials with large differences between the diffusion coefficients of adsorbed gas species. We introduce a geometric approach that rapidly identifies the key features of a pore structure that control molecular diffusion and couple this with efficient molecular modeling calculations that predict the Henry's constant and diffusion activation energy for a range of spherical adsorbates. We demonstrate our approach for >500 MOFs and >160 silica zeolites. Our results indicate that many large pore MOFs will be of limited interest for separations based on kinetic effects, but we identify a significant number of materials that are predicted to have extraordinary properties for separation of gases such as CO2, CH4, and H-2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据